# **Corporate Carbon Footprint**

# 2019

## OMIRA GmbH (hereinafter referred to as OMIRA)

19 August 2020



This greenhouse gas emission balance sheet shows the greenhouse gas emissions of the company for the following reporting period and the locations indicated.

| Period under review:       | 1 January 2019 to 31 December 2019       |
|----------------------------|------------------------------------------|
| Organisational boundaries: | Main administration and Ravensburg and   |
|                            | Neuburg a. d. Donau production sites.    |
| Country:                   | Germany                                  |
| Created by:                | Dr Johannes Eder, Sustainability Officer |

## Abbreviations

| GHG       | Greenhouse Gas                                  |
|-----------|-------------------------------------------------|
| EM factor | Emission factor                                 |
| IPCC      | Intergovernmental Panel on Climate Change       |
| DEFRA     | Department for Environment Food & Rural Affairs |
| GEMIS     | Global Emission Model of Integrated Systems     |
| WWF       | World Wide Fund for Nature                      |
| TQP       | Total quantity processed                        |
| CCF       | Corporate Carbon Footprint                      |
| UBA       | Federal Environment Agency                      |
| km        | Kilometre                                       |
| LEW       | Lechwerke AG                                    |

## Table of contents

| Princip | les and methodology                                              | P. 4  |
|---------|------------------------------------------------------------------|-------|
|         | Principles of GHG calculation                                    | P. 4  |
|         | Included greenhouse gas emissions and data sources               | P. 4  |
|         | Procedure for preparing the greenhouse gas balance sheet<br>P. 7 |       |
| System  | limits                                                           | P. 7  |
| Results | 5                                                                | P. 10 |
| Option  | s for improving the emissions balance                            | P. 17 |
| Conclu  | sion                                                             | P. 18 |
| Source  | and contact                                                      | P. 19 |
| Annex   |                                                                  | P. 20 |

## **Basics and methodology**

#### **Principles of GHG calculation**

The present calculation of greenhouse gas emissions was carried out in accordance with the Greenhouse Gas Protocol (GHG Protocol; 2004). The Greenhouse Gas Protocol is the most widely used and recognised international standard for the accounting of greenhouse gas emissions by organisations.

The following five basic principles have been observed for the preparation of GHG balances:

- ▶ Relevance: Selection of the correct organisational boundaries (selection of company components/locations and subsidiaries) and operational boundaries (selection of emission areas)
- Completeness: Registration of all relevant emission sources within the selected system boundaries
- Consistency: Use of calculation methods, emission factors and selection of system boundaries that allow comparability over years
- Transparency: Clear and comprehensible presentation of the data, emission factors, calculations and results used for external third parties
- Accuracy: Distortions and uncertainties have been minimised so that the results provide a solid basis for decision making

#### Greenhouse gas emissions covered and data sources

#### Included greenhouse gas emissions

The calculation of greenhouse gas emissions (GHG emissions) includes all six greenhouse gases defined by the Intergovernmental Panel on Climate Change (IPCC) and the Kyoto Protocol: carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>), nitrous oxide (N<sub>2</sub>O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulphur hexafluoride (SF<sub>6</sub>). To simplify matters and to provide a better overview, these different greenhouse gases are converted into CO<sub>2</sub> equivalents (CO<sub>2</sub>eq) and presented in this emissions report on the basis of the respective defined greenhouse gas potentials (Global Warming Potentials). The conversion of the collected consumption data (such as electricity consumption or fuel consumption) is carried out by means of emission factors which indicate the GHG emissions per unit (e.g. per kilowatt-hour or litre). The emission factors are taken from the data basis for emission inventories of DEFRA (Department for Environment, Food and Rural Affairs Version 1.01; 2019). Furthermore, the raw materials used for raw milk, the empirically collected GHG emissions from the "AgriClimateChange" project of OMIRA 2016 and the Lake Constance Foundation were used to assess the greenhouse gas emissions in Scope 3. The WWF study of 2012 (Klimawandel auf dem Teller ("Climate Change on Our Doorstep"); WWF Germany, 2012) served as a basis for measuring the GHG emissions of other raw material categories.

The emission factors used are listed in the Annex. The internationally known and used database systems of the emission factors used are scientifically recognised and are used internationally to calculate GHG emissions. Accordingly, the data quality of the emission factors is considered high. Most

of the emission factors used in this report are taken from the DEFRA database (version 1.0, 2019, accessed on 17 August 2020).

## Data sources of own consumption data

The consumption data for Scope 1 (stationary combustion, refrigerants and company vehicle fleet) and Scope 2 (electricity) of OMIRA represent real consumption quantities in the period from 1 January 2019 to 31 December 2019. The data basis in Scope 3 is largely based on real consumption quantities in the period mentioned. A 2019 survey was carried out to provide information on employee travel. The result was extrapolated to the total number of employees. If no data source was available, plausible average values were assumed (Scope 3, Point 2 Business trips "Taxi trips", Scope 3, Point 6 Arrival and departure of external service providers "Maintenance and repair").

The primary data for the consumption quantities in the company were provided by the respective departments (Controlling, Purchasing, Sales, Technology), compiled by the sustainability officer and checked for plausibility.

## **Stationary combustion**

The fuels used by OMIRA are natural gas (standard cubic metres) for heat production in the production process and fuel oil (litres) for heating purposes.

## **Company vehicle fleet**

The consumption of diesel was recorded for the company fleet. Petrol, natural gas and liquid gas are not consumed. The consumption quantities for internal transport between the plants, vehicles on the premises of the production sites, milk collection from farmers via transport vehicles and diesel quantities for outsourced milk collection are available. The diesel quantities for the use of company cars were settled via fuel cards and the diesel quantities were calculated using the euro amount from Controlling and the average diesel price per litre of 1.27 euros per litre (ADAC, 2019). In addition, the diesel quantities from external raw milk deliveries were also calculated by multiplying the exact number of deliveries by the average distance of 330 kilometres from the main delivery region and by a diesel consumption for long distances of 36 litres per 100 kilometres. These assumptions are based on expert data.

## Refrigerant

The refrigerants used for cold rooms in the production process are specified. Only quantities consumed during the reporting period are recorded, e.g. as a result of leaks or other volatilisation.

## Electricity

For purchased electricity, the consumption quantities of the energy service provider LEW (Lechwerke AG) were recorded in kWh (customer electricity mix LEW standard electricity products, residual mix). This consists of the following energy sources: 52.9% renewable energies, 0.01% other renewable energies promoted under the Renewable Energy Sources Act (EEG), 9.4% nuclear power, 33.9% coal, 3.1% natural gas, 0.6% other fossil fuels.

## Employee commutes to the workplace

A questionnaire for our employees was used to record the number of kilometres per vehicle category in 2020 that they drive annually to get to work and back home. Around 17.1% of employees took part in the survey. The result was then extrapolated to 585 employees. One-way journeys were surveyed and the total was calculated for outward and return journeys. The vehicle categories were divided into

public transport, cars (small cars), cars (medium class) and cars (luxury class). Motorbikes and mopeds/scooters were combined. OMIRA had 580 employees in the previous year.

## Business trips

By means of the controlling and booking vouchers, we were able to record the number of business trips and the vehicle categories. The classification of the means of transport was based on a flat-rate evaluation of the distance of each one-way trip. These were divided into air travel (long distance); 4,200 km, air travel (medium distance); 1,900 km, air travel (short distance); 700 km, train journeys; 300 km, bus journeys; 5 km, taxi journeys; 10 km. The individual air trips were assigned to the categories of air travel by the sustainability officer. For train journeys, the actual travel distance was determined using Google maps. It was also assumed that there were two taxi trips per flight and train journey. The assumption is based on information provided by the responsible departments.

## Water, waste water

The consumption figures for external water from both sites were provided by the technical department. The waste water volumes generated are made up of the proportion of external water, around 50% of Ravensburg's own water consumption and 50% of the vapour water generated in the production process for milk powder manufacture.

## Waste

The waste quantities generated were compiled in a waste balance sheet by the waste officers at the Ravensburg and Neuburg sites. The waste was divided according to type. Wood (packaging from new machines, disposable pallets, waste wood), paper (office paper, material repackaging, cardboard, loose files), plastic (foil packaging, material repackaging), composite packaging (drinking milk packaging), residual waste, organic waste, construction waste, industrial waste. Industrial waste includes glass, flat glass, scrap, oil separator contents, solvents, antifreeze, acids, chemicals, lubricating oils, waste oil, paint and varnish waste). It is always attempted to collect all types of waste separately and to dispose of them separately. However, this cannot yet be guaranteed for all types of waste. A uniform emission factor of  $0.021 \text{ kg CO}_2$  equivalent per kilogram of waste has therefore been chosen, assuming that all waste is sent for thermal recycling.

## Paper

The consumption figures for paper come from Central Purchasing and include office paper as well as advertising material.

## Transports by suppliers and service providers

For maintenance and repair work carried out by external service providers, an estimated flat-rate value of kilometres (50,000 kilometres) was assumed, as it was not possible to collect exact data. 30,000 kilometres more than in the previous year 2018 were assumed. This results from the major refurbishment measures at both sites.

This conservative estimate is based on expert assumptions. A supplier survey was conducted to evaluate the delivery of ingredients and materials.

The survey asked about the kilometres driven (one way) from the supplier's central dispatch department to the respective OMIRA production sites and the quantity of goods delivered. The survey covered about 90% of the total purchasing volume. The outward and return journeys were used as the basis for the calculations in the GHG balance sheet.

#### Raw materials used

The processing quantities for raw milk, additives and consumables were recorded by the Controlling and Central Purchasing departments.

The calculation is thus based on plausible data. The high proportion of real consumption quantities from the company's own data stock can be assessed as very good, with high data quality.

The total quantity processed (GHG) was chosen as the reference value for calculating the relative indicators, as the GHG emissions per GHG give a real picture of the greenhouse gas emissions per quantity of milk processed. The data quality of the TQPs can be classified as very high, as it reflects the real processing volumes of OMIRA in the period from 1 January 2019 to 31 December 2019.

## Table 1: Total quantity processed

| 2019        | 2018        | Veränd     | lerung |
|-------------|-------------|------------|--------|
| kg          | kg          | kg         | %      |
| 705.338.221 | 686.708.589 | 18.629.632 | 2,7%   |

The total quantity processed is made up of raw milk, skimmed milk, cream and concentrates. The total quantity processed increased by 2.7% compared to the previous year. The increase in the total volume processed is due to the increase in external purchases of primary raw materials.

## Procedure for preparing the greenhouse gas balance sheet.

The absolute greenhouse gas emissions result from multiplying the consumption data of OMIRA and the respective emission factors. These are calculated for scope one to three and together result in OMIRA's total greenhouse gas emissions (see system limits).

The following steps were taken to prepare the GHG balances:

- 1. Definition of the balancing period, the organisational and operational system boundaries.
- 2. Research and provision of data by OMIRA and plausibility checks.
- 3. Calculation of greenhouse gas emissions.
- 4. Summary of the results in the present GHG report.

In the following section "System boundaries", the balancing period and the organisational and operational system boundaries are explained in more detail.

## System boundaries

#### Period under review

The data contained in the GHG balance sheet cover the period from 1 January 2019 to 31 December 2019 and, in comparison, from 1 January 2018 to 31 December 2018.

#### Organisational boundaries

OMIRA GmbH is a dairy with two locations in Baden-Württemberg and Bavaria. OMIRA has 585 employees. The dairy is supplied with raw milk by about 1,500 farmers. The administrative headquarters with production facilities for industrial products (milk powder, butterfat) and fresh products is in Ravensburg. Another production site for drinking milk and desserts is located in Neuburg a. d. Donau. When defining the organisational system boundaries, it must be decided which organisation, with which locations, the GHG balance sheet should include. For the 2019 balance sheet, the Ravensburg and Neuburg sites were considered. The following greenhouse gas balance contains the cumulative GHG emissions of the two sites.

## **Operational boundaries**

The operational system boundaries determine which emission sources are taken into account within the previously defined organisational boundaries. According to the GHG Protocol (2004), the operational boundaries are divided as follows (see below). It should be noted that only Scope 1 and Scope 2 emissions are regulated. The scope of the emission sources considered in Scope 3 depends on the objectives of the company management. In the present case, the major emission sources in OMIRA's value chain that go beyond Scopes 1 and 2 should be considered and presented at company level.

## Scope 1 – Direct emissions

Scope 1 covers all greenhouse gas emissions that occur directly in the organisation, e.g. greenhouse gas emissions from combustion by stationary sources (natural gas, fuel oil) or mobile sources (company vehicle fleet), greenhouse gas emissions from chemical processes and fugitive greenhouse gas emissions from air conditioning system leakage.

#### Scope 2 – Indirect emissions from energy:

Scope 2 covers all indirect greenhouse gas emissions caused by the provision of energy outside the organisation by an energy supply company. This includes electricity, district heating and district cooling. However, district heating and cooling are not used by OMIRA.

#### Scope 3 - Other indirect emissions:

Scope 3 includes all other significant greenhouse gas emissions caused by the organisation's activities. This includes greenhouse gas emissions from the use of products and services by the reporting organisation. For approx. 585 employees, the employees' commutes to the workplace were taken into account. Due to international sales, there is a significant amount of business travel by air, rail or car.

Water and wastewater volumes were taken into account, as well as waste and paper consumption, as these consumption volumes account for a large proportion of the CCF in Scope 3.

Travel to and from external service providers and suppliers was also taken into account. The materials consumed within the company, such as wooden pallets, aluminium for circuit boards, plastics and composite packaging, as well as the primary raw material quantities of milk are included, but are considered separately, as milk has a very high influence on the CCF and we are currently not having it made climate-neutral. Milk and the raw materials used are high drivers of the GHG balance, which is to be compensated for in the future via the suppliers. The milk and the raw materials used are evaluated using average values from the recognised databases already mentioned in the methods section. However, work is underway to ensure that this can be closely examined in the future and thus a real emission factor can be calculated.

Indirect greenhouse gas emissions from Scope 1 (stationary combustion of natural gas and heating oil, diesel consumption by the company's vehicle fleet and refrigerants), which have arisen through the chain of fuels (e.g. through transport, refining, storage and delivery), have also been calculated.

The following table shows which emission sources have been included in the present CO<sub>2</sub> balance:

 Table 2: Operational system boundaries

| Category | Emission source                                     |
|----------|-----------------------------------------------------|
| Scope 1  | Stationary combustion, recovery of process heat     |
| Scope 1  | Company vehicle fleet                               |
| Scope 1  | Refrigerant                                         |
| Scope 2  | Electricity                                         |
| Scope 3  | Employee commutes to the workplace                  |
| Scope 3  | Business trips                                      |
| Scope 3  | Water and sewage                                    |
| Scope 3  | Paper                                               |
| Scope 3  | Waste                                               |
| Scope 3  | Arrival and departure of external service providers |
| Scope 3  | Indirect emissions through energy supply            |
| Scope 3  | Raw materials used                                  |

## Results

| Emissionsquelle                  | Menge      | Einheit   | EM-Faktor | Einheit | CO2e [t] 2019 | CO2e [t] 2018 |
|----------------------------------|------------|-----------|-----------|---------|---------------|---------------|
| Scope 1 - Direkte THG-Emissionen |            |           |           |         |               |               |
| I. Stationäre Verbrennung        |            |           |           |         |               |               |
| Heizöl                           | 24.120     | Liter     | 2,540     | kg/l    | 61,26         | 57,25         |
| Erdgas                           | 16.781.567 | Nm³       | 2,037     | kg/Nm³  | 34.184,05     | 35.209,22     |
| Summe I. Stationäre Verbrennung  |            | 35.266,47 |           |         |               |               |
| II. Kältemittel                  |            |           |           |         |               |               |
| HFC-134a                         | 118        | kg        | 1.430,000 | kg/kg   | 168,74        | 28,46         |
| R407c                            | 0,0        | kg        | 1.774,000 | kg/kg   | 0,00          | 56,24         |
| R410a                            | 0,0        | kg        | 2.088,000 | kg/kg   | 0,00          | 6,26          |
| R404a                            | 0          | kg        | 3.922,000 | kg/kg   | 0,00          | 1,80          |
| Summe II. Kältemittel            |            |           |           |         | 168,74        | 92,76         |
| III. Unternehmensfuhrpark        |            |           |           |         |               |               |
| Diesel                           | 3.467.600  | Liter     | 2,687     | kg/l    | 9.317,44      | 8.947,72      |
| Summe III. Unternehmensfuhrpark  |            |           |           |         | 9.317,44      | 8.947,72      |
| Gesamt Scope 1                   |            |           |           |         | 43.731,50     | 44.306,95     |

#### Table 3: Scope 1 – Direct GHG emissions

## **Stationary combustion**

Energy generation by burning fossil fuels was exclusively for own consumption. In 2019, a total of 16,781,567 standard cubic metres of natural gas and 24,120 litres of heating oil were required for production (primarily milk powder production) and for heating the sites. This corresponds to greenhouse gas emissions totalling 34,245.32 tonnes of CO<sub>2</sub> equivalents. Compared to 2018, the demand for heating oil rose moderately by 1,580 litres (7.01%), while natural gas consumption fell by 418,834 standard cubic metres (2.44%), meaning greenhouse gas emissions were reduced by a total of 1,021.16 tonnes of CO<sub>2</sub> equivalents (2.90%). One reason for the lower energy demand in 2019 in the form of natural gas was the higher production efficiency at the sites and the use of waste heat by the steam turbine. However, the conversion factor for natural gas also fell slightly from 2.047 kg CO<sub>2</sub> equivalents per cubic metre by 0.010 kg CO<sub>2</sub> equivalents per cubic metre (0.49%) from 2018 to 2019 to 2.037 kg CO<sub>2</sub> equivalents per cubic metre.

#### Refrigerant

In 2019, the refrigerant HFC-134a was used, resulting in greenhouse gas emissions of 168.74 tonnes of  $CO_2$  equivalents. By 2018, the amount of greenhouse gases has increased by 140.28 tonnes of  $CO_2$  equivalents. The background is the higher refill quantity of the refrigerant HFC-134a. The emission factors of the refrigerants used have not changed in contrast to the previous year.

#### **Company vehicle fleet**

While in 2018 the greenhouse gas emissions amounted to 8,947.72 tonnes of  $CO_2$  equivalents, in 2019, 9,317.44 additional tonnes of  $CO_2$  equivalents (4.13%) were produced. This can be attributed to the higher external raw material purchases, as the distances for the external raw material to the sites are longer. The emission factor used for diesel in 2019 has decreased slightly compared to the previous year and is 2.687 kg  $CO_2$  equivalents per litre (Defra, 2019).

## Table 4: Scope 2 – Indirect GHG emissions from energy

| Emissionsquelle                                                       | Menge              | Einheit | EM-Faktor | Einheit | CO2e [t] 2019 | CO2e [t] 2018 |  |  |  |
|-----------------------------------------------------------------------|--------------------|---------|-----------|---------|---------------|---------------|--|--|--|
| Coope 2 (Indirekte THG-Emissionen aus Energielieferungen)             |                    |         |           |         |               |               |  |  |  |
| I. Strom                                                              |                    |         |           |         |               |               |  |  |  |
| 1. Tatsächlich angefallene THG-Emissionen                             |                    |         |           |         |               |               |  |  |  |
| Kundenstrommix LEW Standardstromprodukte                              | 16.500.095         | kWh     | 0,365     | kg/kWh  | 6.022,53      | 0,00          |  |  |  |
| Selbst erzeugter Strom (Dampf-, Gasturbine)                           | 20.777.582         | kWh     | 0,000     | kg/kWh  | 0,00          | 0,00          |  |  |  |
| Tatsächlich angefallene THG-Emissionen Strom                          |                    |         |           |         | 6.022,53      | 0,00          |  |  |  |
| 2. Hypothetisch angefallene THG-Emissionen au                         | uf Basis Bundesmix |         |           |         |               |               |  |  |  |
| Kundenstrommix LEW Standardstromprodukte                              | 16.500.095         | kWh     | 0,435     | kg/kWh  | 7.177,54      | 7.103,89      |  |  |  |
| Selbst erzeugter Strom (Dampf-, Gasturbine)                           | 20.777.582         | kWh     | 0,435     | kg/kWh  | 9.038,25      | 8.733,52      |  |  |  |
| Hypotetisch angefallene THG-Emissionen auf Bas                        | sis Bundesmix      |         |           |         | 16.215,79     | 15.837,41     |  |  |  |
| 3. Vergleich tatsächliche und hypothetisch angefallene THG-Emissionen |                    |         |           |         |               |               |  |  |  |
| Vergleichsrechnung                                                    |                    |         |           |         | -10.193,25    | -15.837,41    |  |  |  |
| Gesamt Scope 2                                                        |                    |         |           |         | 6.022,53      | 0,00          |  |  |  |

#### Electricity

For 2019, we have procured electricity from LEW AG (Lechwerke AG). This is the LEW standard electricity product (residual mix). From 2015, the Greenhouse Gas Protocol requires that emissions in Scope 2 are also compared with the national average. In addition, proof of the emission factor used must be provided and a justification of any deviations must be provided. Using the average German emission factor of 435 g/kWh (2019) would have resulted in direct emissions of 16,215.79 tonnes of CO<sub>2</sub> equivalents in 2019 and 15,837.41 tonnes of CO<sub>2</sub> equivalents in 2018. The LEW residual mix includes 52.9% renewable energies, 0.01% other renewable energies supported by (EEG), 9.4% nuclear power, 33.9% coal, 3.1% natural gas, 0.6% other fossil energy sources.

#### Table 5: Scope 3 – Other indirect GHG emissions

| Emissionsquelle                             | Menge     | Einheit | EM-Faktor | Einheit            | CO2e [t] 2019 | CO2e [t] 2018 |  |  |
|---------------------------------------------|-----------|---------|-----------|--------------------|---------------|---------------|--|--|
| Scope 3 - Sonstige indirekte THG-Emissionen |           |         |           |                    |               |               |  |  |
| I. Anfahrt der Mitarbeiter                  |           |         |           |                    |               |               |  |  |
| Öffentliche Verkehrsmittel (Bus, Bahn,)     | 692.019   | km      | 0,073*    | kg/km              | 50,52         | 26,28         |  |  |
| Pkw, Kleinwagen                             | 1.354.882 | km      | 0,150     | kg/km              | 203,23        | 207,38        |  |  |
| Pkw, Mittelklasse                           | 3.503.724 | km      | 0,181     | kg/km              | 634,17        | 350,25        |  |  |
| Pkw, Oberklasse                             | 46.376    | km      | 0,229     | kg/km              | 10,62         | 9,05          |  |  |
| Motorrad                                    | 131.013   | km      | 0,103**   | kg/km              | 13,49         | 9,40          |  |  |
| Summe I. Anfahrt der Mitarbeiter            |           |         |           |                    | 912,04        | 602,36        |  |  |
| II. Dienstreisen                            |           |         |           |                    |               |               |  |  |
| Flugreisen, Langstrecke                     | 12.754    | km      | 0,196     | kg/passanger<br>km | 2,50          | 0,00          |  |  |
| Flugreisen, Mittelstrecke                   | 29.382    | km      | 0,158     | kg/passanger<br>km | 4,64          | 7,28          |  |  |
| Flugreisen, Kurzstrecke                     | 24.955    | km      | 0,255     | kg/passanger<br>km | 6,36          | 17,31         |  |  |
| Zugfahrten                                  | 33.235    | km      | 0,041     | kg/passanger<br>km | 1,36          | 1,67          |  |  |
| Taxifahrten                                 | 5.000     | km      | 0,210     | kg/km              | 1,05          | 0,97          |  |  |
| Summe II. Dienstreisen                      |           | 27,24   |           |                    |               |               |  |  |
| III. Wasser und Abwasser                    |           |         |           |                    |               |               |  |  |
| Wasser                                      | 662.701   | m³      | 0,344     | kg/m³              | 227,97        | 214,78        |  |  |
| Abwasser                                    | 1.223.072 | m³      | 0,708     | kg/m³              | 865,93        | 726,37        |  |  |
| Summe III. Wasser und Abwasser              |           |         |           |                    | 1.093,90      | 941,15        |  |  |
| IV. Papier                                  |           |         |           |                    |               |               |  |  |
| Papier, Frischfaser                         | 8.987     | kg      | 0,953     | kg/kg              | 8,56          | 10,10         |  |  |
| Summe IV. Papier                            |           |         |           |                    | 8,56          | 10,10         |  |  |
| V. Abfall                                   |           |         |           |                    |               |               |  |  |
| Holz                                        | 32.560    | kg      | 0,021     | kg/kg              | 0,70          | 0,50          |  |  |
| Papier                                      | 520.120   | kg      | 0,021     | kg/kg              | 10,92         | 11,40         |  |  |
| Kunststoff                                  | 186.680   | kg      | 0,021     | kg/kg              | 3,92          | 4,57          |  |  |
| Verbundverpackungen                         | 53.060    | kg      | 0,021     | kg/kg              | 1,11          | 1,12          |  |  |
| Restmüll                                    | 163.350   | kg      | 0,021     | kg/kg              | 3,43          | 3,67          |  |  |
| Biomüll                                     | 1.321.124 | kg      | 0,021     | kg/kg              | 27,74         | 25,95         |  |  |
| Bauschutt                                   | 125.370   | kg      | 0,021     | kg/kg              | 2,63          | 0,33          |  |  |
| Industrieabfall                             | 102.278   | kg      | 0,021     | kg/kg              | 2,15          | 3,11          |  |  |
| Summe V. Abfall                             |           |         |           |                    | 52,61         | 50,65         |  |  |

\*Arithmetic mean of bus and train journeys (Defra, 2019).

\*\*By combining motorbike, moped and scooter, the emission factor for "managed motorbikes medium" was adopted (Defra, 2019).

Other indirect GHG emissions include greenhouse gas emissions that are not directly influenced and are not under our direct control.

#### **Directions for employees**

Greenhouse gas emissions in relation to employee commutes to work represent a minor item in the greenhouse gas balance, with 912.04 tonnes of  $CO_2$  equivalents in 2019 and 602.36 tonnes of  $CO_2$  equivalents in 2018. The 51.41% increase in 2019 is due to the re-evaluation and survey of employees. The kilometres reported have increased by 53.4% from 3,758,683 km in 2018 to 5,728,014 km. However, the emission factors used have decreased. In general, OMIRA also has more employees compared to the previous year.

#### **Business trips**

Another item on the balance sheet is business travel, which was mainly by air, train and taxi, with 15.92 tonnes in 2019 and 27.24 tonnes of  $CO_2$  equivalents in 2018. The 41.56% reduction from 2018 to 2019 is generally due to less travel as more meetings could be held via Skype.

## Water and sewage

Greenhouse gas emissions for water and wastewater increased by 152.75 tonnes of  $CO_2$  equivalents (16.23%) from 2018 with 941.15 tonnes of  $CO_2$  equivalents compared to 2019 with 1,093.90 tonnes of  $CO_2$  equivalents. Due to the increase in the production of dry milk products in Ravensburg in 2019, the drying process resulted in more vapour water, which was discharged into the waste water. At the same time, more extraneous water was also consumed, as the total amount processed also increased.

## Paper

With 8.56 tonnes of  $CO_2$  equivalents in 2019 and 10.10 tonnes of  $CO_2$  equivalents in 2018, paper consumption is not a major source of emissions. The slight reduction of 15.25% in paper consumption can be attributed to lower order volumes.

#### Waste

Greenhouse gas emissions from waste also make a small contribution to the overall greenhouse balance, with 52.61 tonnes of  $CO_2$  equivalents in 2019 and 50.65 tonnes of  $CO_2$  equivalents in 2018. Greenhouse gas emissions from waste have increased by 3.86% from 2018 to 2019 due to an increase in waste generation, especially organic waste and construction waste.

| Emissionsquelle                                       | Menge           | Einheit | EM-Faktor | Einheit  | CO2e [t] 2019 | CO2e [t] 2018 |  |
|-------------------------------------------------------|-----------------|---------|-----------|----------|---------------|---------------|--|
| Scope 3 - Sonstige indirekte THG-Emissionen           |                 |         |           |          |               |               |  |
| VI. An- und Abreise externer Dienstleister            |                 |         |           |          |               |               |  |
| Wartung / Instandsetzung                              | 50.000          | km      | 0,252     | kg/km    | 12,60         | 5,14          |  |
| Materialanlieferung LKW                               | 2.758.500       | km      | 1,661     | kg/km    | 4.581,87      | 2.049,64      |  |
| Summe VI. An- und Abreise externer Dienstle           |                 |         |           | 4.594,47 | 2.054,78      |               |  |
| VII. Indirekte Emissionen durch Energiebereitstellung |                 |         |           |          |               |               |  |
| Heizöl                                                | 24.120          | Liter   | 0,528     | kg/l     | 12,74         | 11,90         |  |
| Erdgas                                                | 16.781.567      | Nm³     | 0,263     | kg/m³    | 4.413,55      | 4.902,11      |  |
| Diesel                                                | 3.467.600       | Liter   | 0,626     | kg/l     | 2.170,72      | 2.083,81      |  |
| Strom                                                 | 16.500.095      | kWh     | 0,070     | kg/kWh   | 1.155,01      | 1.262,16      |  |
| Selbst erzeugter Strom                                | 20.777.582      | kWh     | 0,070     | kg/kWh   | 1.454,43      | 1.551,70      |  |
| Summe VII. Indirekte Emissionen durch Ener            | giebereitstellu | ng      |           |          | 9,206,44      | 9.811.69      |  |

Table 6: Scope 3 – Other indirect GHG emissions

#### Arrival and departure of external service providers

For the determination of emissions by external service providers, the journeys for maintenance and repair as well as the delivery to the goods receiving area by forwarding agents were taken into account. The greenhouse gas emissions amounted to 2,054.78 tonnes of  $CO_2$  equivalents in 2018 and 4581.87 tonnes of  $CO_2$  equivalents in 2019. The increase is 2539.96 tonnes of  $CO_2$  equivalents from 2018 to 2019 (123.6%). Firstly, the distances travelled for maintenance and repair work have increased from 20,000 km in 2018 to 50,000 km in 2019. In addition, a more detailed evaluation and query of the kilometres travelled suppliers resulted in an increase of 49.93% in the kilometres driven. One reason for this is the longer distances travelled by suppliers and the increase in the total processing volume.

## Indirect emissions through energy supply

Indirect greenhouse gas emissions of 9,811.69 tonnes of  $CO_2$  equivalents in 2018 and 9,206.44 tonnes of  $CO_2$  equivalents in 2019 are incurred for the provision of energy sources in Scope 1 and Scope 2. The

reduction can be attributed mainly to lower consumption of natural gas. The emission factors used have also decreased compared to the previous year.

## Raw materials used

When looking at the greenhouse gas emissions of the raw materials used, it can be seen that these account for the largest share (96.34%) in the overall balance with 1,294,613.95 tonnes of  $CO_2$  equivalents in 2019 and 1,136,122.76 tonnes of  $CO_2$  equivalents in 2018. The increase in GHG emissions can be derived from the significantly higher purchase of concentrates and raw milk in 2019. More volume was processed in 2019 than in 2018 and, in addition, the purchased concentrate has a significantly higher conversion factor than normal raw milk.

| Emissionsquelle                             | Menge       | Einheit | EM-Faktor | Einheit | CO2e [t] 2019 | CO2e [t] 2018 |  |
|---------------------------------------------|-------------|---------|-----------|---------|---------------|---------------|--|
| Scope 3 - Sonstige indirekte THG-Emissionen |             |         |           |         |               |               |  |
| VIII. Eingesetzte Rohstoffe                 |             |         |           |         |               |               |  |
| Rohmilch eigen                              | 585.036.000 | kg      | 1,000     | kg/kg   | 585.036,00    | 654.463,00    |  |
| Rohmilch Zukauf                             | 82.550.102  | kg      | 1,000     | kg/kg   | 82.550,10     | 4.068,96      |  |
| Magermilch/Buttermilch                      | 12.162.084  | kg      | 14,700    | kg/kg   | 178.782,63    | 151.055,51    |  |
| Konzentrat                                  | 23.148.915  | kg      | 14,700    | kg/kg   | 340.289,05    | 249.959,68    |  |
| Rahm                                        | 2.441.120   | kg      | 3,280     | kg/kg   | 8.006,87      | 2.941,13      |  |
| Zwischensumme VIII. Primärrohstoffe Milc    | h           |         |           |         | 1.194.664,66  | 1.062.488,28  |  |
| Aluminium (Platinen)                        | 180.351     | kg      | 12,871    | kg/kg   | 2.321,30      | 1.920,73      |  |
| Holz (Paletten)                             | 2.507.626   | kg      | 0,414     | kg/kg   | 1.038,16      | 714,44        |  |
| Kartonagen                                  | 4.084.587   | kg      | 0,843     | kg/kg   | 3.443,31      | 3.705,52      |  |
| Kunststoffe                                 | 3.583.846   | kg      | 3,116     | kg/kg   | 11.167,26     | 8.445,59      |  |
| Papier                                      | 209.740     | kg      | 0,953     | kg/kg   | 199,88        | 127,95        |  |
| Verbundverpackungen                         | 4.187.068   | kg      | 1,999     | kg/kg   | 8.369,95      | 10.241,04     |  |
| Zutaten                                     | 26.217.654  | kg      | 2,800     | kg/kg   | 73.409,43     | 48.479,22     |  |
| Zwischensumme VIII. zusätzliche Rohstoffe   | 2           |         |           |         | 99.949,29     | 73.634,49     |  |
| Summe VIII. Eingesetzte Rohstoffe           |             |         |           |         | 1.294.613,95  | 1.136.122,76  |  |

|--|



Figure 1: Breakdown of the scopes with GHG emissions of the raw materials used in Scope 3

Figure 1 shows that Scope 3 with the quantities of raw materials used accounts for the largest share (96.34%) with 1,294,613.95 tonnes of  $CO_2$  equivalents of the greenhouse gas balance, followed by Scope 1 with 43,731.50 tonnes of  $CO_2$  equivalents (3.21%). Scope 2 had a small impact, amounting to 0.44% with 6,022.53 tonnes of  $CO_2$  equivalents. The main driver is the raw material milk in Scope 3.

| Emissionsquelle                                         | CO2e [t] 2019 | [%]     | CO2e [t] 2018 | [%]     |
|---------------------------------------------------------|---------------|---------|---------------|---------|
| Scope 1 - Direkte THG-Emissionen                        |               |         |               |         |
| Stationäre Verbrennung                                  | 34.245,32     | 2,52%   | 35.266,47     | 2,95%   |
| Kältemittel                                             | 168,74        | 0,01%   | 92,76         | 0,01%   |
| Unternehmensfuhrpark                                    | 9.317,44      | 0,68%   | 8.947,72      | 0,75%   |
| Scope 2 - Indirekte THG-Emissionen aus Energielieferung |               |         |               |         |
| Strom                                                   | 6.022,53      | 0,44%   | 0,00          | 0,00%   |
| Scope 3 - Sonstige indirekte THG-Emissionen             |               |         |               |         |
| Anfahrt der Mitarbeiter                                 | 912,04        | 0,07%   | 602,36        | 0,05%   |
| Dienstreisen                                            | 15,92         | < 0,01% | 27,24         | < 0,01% |
| Wasser und Abwasser                                     | 1.093,90      | 0,08%   | 941,15        | 0,08%   |
| Papier                                                  | 8,56          | < 0,01% | 10,10         | < 0,01% |
| Abfall                                                  | 52,61         | < 0,01% | 50,65         | < 0,01% |
| An- und Abreiser externer Dienstleister                 | 4.594,50      | 0,34%   | 2.054,78      | 0,17%   |
| Indirekte Emissionen durch Energiebereitstellung        | 9.206,44      | 0,68%   | 9.811,69      | 0,82%   |
| Eingesetzte Rohstoffe                                   | 1.294.613,95  | 95,17%  | 1.136.122,76  | 95,16%  |
| Gesamt THG-Emissionen                                   | 1.360.251,95  | 100,00% | 1.193.927,69  | 100,00% |

Table 8: Total greenhouse gas balance with GHG emissions of the raw materials used in Scope 3

When considering total greenhouse gas emissions including the raw materials used, it can be seen that they increased by 166,324.26 (13.93%) tonnes of  $CO_2$  equivalents from 2018 to 2019.

Taking into account the total quantities processed (TQPs) in 2019 and 2018, this increase can also be confirmed. In 2018, the share was 1.739 kg  $CO_2$  equivalents per tonne of TQPs and in 2019 1.929 kg  $CO_2$  equivalents per tonne of TQPs. The increase in diesel volumes and the switch to the residual mix of another electricity supplier and the increase in processing dairy raw materials had the biggest impact on the increase in GHG emissions in 2019. The emission factors used have decreased somewhat.

The raw materials/materials used in the company, such as the primary raw material quantities of milk and the packaging materials such as wooden pallets, aluminium for circuit boards, plastics and composite packaging, together account for a considerable share of the total GHG emissions. In future, these are to be offset via suppliers, which is why a consideration without these raw materials/materials follows.



Figure 2: Breakdown of the Scopes without GHG emissions of the raw materials used in Scope 3

Looking at the overall GHG emissions balance, excluding GHG emissions from the raw materials used in Scope 3, direct GHG emissions in Scope 1 form the largest block with 66.63%, followed by Scope 3 with 24.20%. Scope 2 had an impact of 9.18%. The main driver of GHG emissions in Scope 1 was natural gas consumption. Natural gas is used for heat generation. This analysis also makes it possible to identify specific effects associated with energy-saving measures in the production process. **Table 9**: Total greenhouse gas balance excluding GHG emissions of the raw materials/materials usedin Scope 3

| Emissionsquelle                                         | CO2e [t] 2019 | [%]     | CO2e [t] 2018 | [%]     |  |  |  |
|---------------------------------------------------------|---------------|---------|---------------|---------|--|--|--|
| Scope 1 - Direkte THG-Emissionen                        |               |         |               |         |  |  |  |
| Stationäre Verbrennung                                  | 34.245,32     | 52,17%  | 35.266,47     | 61,01%  |  |  |  |
| Kältemittel                                             | 168,74        | 0,26%   | 92,76         | 0,16%   |  |  |  |
| Unternehmensfuhrpark                                    | 9.317,44      | 14,20%  | 8.947,72      | 15,48%  |  |  |  |
| Scope 2 - Indirekte THG-Emissionen aus Energielieferung |               |         |               |         |  |  |  |
| Strom                                                   | 6.022,53      | 9,18%   | 0,00          | 0,00%   |  |  |  |
| Scope 3 - Sonstige indirekte THG-Emissionen             |               |         |               |         |  |  |  |
| Anfahrt der Mitarbeiter                                 | 912,04        | 1,39%   | 602,36        | 1,04%   |  |  |  |
| Dienstreisen                                            | 15,92         | 0,02%   | 27,24         | 0,05%   |  |  |  |
| Wasser und Abwasser                                     | 1.093,90      | 1,67%   | 941,15        | 1,63%   |  |  |  |
| Papier                                                  | 8,56          | 0,01%   | 10,10         | 0,02%   |  |  |  |
| Abfall                                                  | 52,61         | 0,08%   | 50,65         | 0,09%   |  |  |  |
| An- und Abreiser externer Dienstleister                 | 4.594,50      | 7,00%   | 2.054,78      | 3,55%   |  |  |  |
| Indirekte Emissionen durch Energiebereitstellung        | 9.206,44      | 14,03%  | 9.811,69      | 16,97%  |  |  |  |
| Gesamt THG-Emissionen *** ohne eingesetzte Rohstoffe*** | 65.638,00     | 100,00% | 57.804,93     | 100,00% |  |  |  |

When considering the total greenhouse gas emissions without the share of raw materials/materials used, it can be seen that they have increased by 7,833.08 tonnes of  $CO_2$  equivalents (13.55%) from 2018 to 2019. Taking into account the total quantities processed (TQPs) in 2018 and 2019, the increase can be confirmed. In 2018, the proportion will be 0.084 kg  $CO_2$  equivalents per tonne of TQPs and in 2019 0.093 kg  $CO_2$  equivalents per tonne of TQPs.

## Options for improving the emissions balance

## Scope 1 – Direct emissions

The greatest leverage effect for reducing the greenhouse gas balance under Scope 1 can be derived from the reduction of natural gas volumes. Natural gas is needed to generate process heat in Ravensburg for milk powder production. By constantly optimising production processes with regard to our energy management (ISO 50.001), we could successively reduce the demand for natural gas. The use of new, more energy-efficient technologies will also enable us to reduce the proportion of GHG emissions from stationary combustion. As regards the reduction of diesel, there is the possibility of extending the use of diesel in new purchases of electrically powered vehicles, and of paying attention to lower diesel consumption or purchasing hybrid vehicles. Optimisation of fleet management and driver training as well as fuel-saving training or the conversion to biodiesel round off the measures. Consideration should also be given to minimising the demand for heating oil, e.g. when implementing local heating networks.

## Scope 2 – Indirect emissions from energy

To reduce the energy required in the form of electricity, the use of more efficient drives and the demand-based operation of plants can be very effective. In addition, production and administration can be successively converted to LED lighting. Regular energy training courses for the entire workforce can also raise awareness of how to save electricity. The switch to green electricity would have a further positive impact.

#### Scope 3 – Other indirect emissions

One possible option to reduce GHG emissions in Scope 3 would be to provide monetary or other incentives for employees to carpool or use public transport when travelling to work. Here, among other things, consideration is already being given to integrating a cycle to work campaign. As the majority of business trips consist of short-haul flights, these could be reduced. Rail travel would be an alternative here. In order to reduce business travel in the long term, video conferencing would be an option. In the use of paper, GHG emissions can be reduced by using copier paper more economically and switching to recycled paper. New, optimised logistics concepts should be developed together with suppliers to reduce GHG emissions during delivery. The largest part of the GHG emissions in the dairy are the raw materials used, with a share of almost 97% in 2018. In the upstream sector, milk production, the AgriClimateChange project can save up to 15% of GHG emissions in milk production. However, in 2019 and 2018, the same emission factor was calculated for milk, as the AgriClimateChange project cannot yet be applied to all farms. The following measures could be taken, for instance by farmers, to reduce GHG emissions. The use of biodiesel, conversion to regional feed, more energy efficient cooling, switch to LED lighting. In general, however, it has been shown that on average in Germany, approximately 1 kg of CO<sub>2</sub>equivalents per litre of milk is applicable.

## Conclusion

The present greenhouse gas balance provides a clear overview of the greenhouse gas emissions caused by OMIRA. This report thus forms an important building block in the environmental management of the company. In addition to the reduction measures already proposed, Scope 3 should increasingly work with stakeholders to develop measures to reduce GHG emissions throughout the supply chain. Furthermore, we can offset the greenhouse gases produced with emission rights in order to achieve a balance of the GHG emissions currently generated. We are striving to become a climate-neutral company in this respect.

Climate neutrality means that no additional greenhouse gases are emitted into the atmosphere by a process. This is achieved through an emissions-reduced process, the remaining greenhouse gas emissions of which are offset by an investment in climate protection projects.

#### Sources

DEFRA (2019): UK Government conversion factors for Company Reporting. [Online] UK Government conversion factors for Company, accessed on 17 August 2020.

LEW AG list (Lechwerke AG) TW 2019, accessed on 18 August 2020.

WWF study (2012): Klimawandel auf dem Teller ("Climate Change on Our Doorstep"), accessed on 26 July 2020.

Greenhouse Gas Protocol (GHG Protocol, 2004)

ADAC (2019), diesel price. Accessed on 14 August 2020: https://presse.adac.de/meldungen/adacev/verkehr/kraftstoffpreise-2018-deutlich-gestiegen.html

#### Contact

OMIRA GmbH Jahnstraße 10 D-88214 Ravensburg, Germany

Dr Johannes LorenzSustainability Officer Tel.: +49 (0)8431 585-127 (ND)

## Annex

## **GHG** emissions

| Term                    | Emission factor | Unit               | Source      | Comment                                 |
|-------------------------|-----------------|--------------------|-------------|-----------------------------------------|
| Fuel oil                | 2.540           | kg/l               | Defra, 2019 |                                         |
| Natural gas             | 2.037           | kg/m³              | Defra, 2019 |                                         |
| Diesel                  | 2.687           | kg/l               | Defra, 2019 |                                         |
| HFC-134a                | 1430.000        | kg/kg              | Defra, 2019 |                                         |
| R407c                   | 1774.000        | kg/kg              | Defra, 2019 |                                         |
| R410a                   | 2088.000        | kg/kg              | Defra, 2019 |                                         |
| R404A                   | 3922.000        | kg/kg              | Defra, 2019 |                                         |
| LEW residual mix        | 0.365           | kg/kWh             | LEW, 2019   |                                         |
| Electricity DE          | 0.435           | kg/kWh             | LEW, 2019   |                                         |
| Public transport        | 0.073*          | kg/km              | Defra, 2019 |                                         |
| Car, small car          | 0.150           | kg/km              | Defra, 2019 | Unknown fuel                            |
| Car, middle class       | 0.181           | kg/km              | Defra, 2019 | Unknown fuel                            |
| Car, luxury class       | 0.229           | kg/km              | Defra, 2019 | Unknown fuel                            |
| Motorcycle              | 0.103           | kg/km              | Defra, 2019 | Motorbike medium                        |
| Air travel, long haul   | 0.196           | kg/passenger<br>km | Defra, 2019 | Long haul, average<br>passenger         |
| Air travel, medium-haul | 0.158           | kg/passenger<br>km | Defra, 2019 | Short haul, average passenger           |
| Air travel, short haul  | 0.255           | kg/passenger<br>km | Defra, 2019 | Domestic, average<br>passenger          |
| Train journeys          | 0.041           | kg/km              | Defra, 2019 | National rail                           |
| Taxi journeys           | 0.210           | kg/km              | Defra, 2019 | Regular taxi                            |
| Water                   | 0.344           | kg/m³              | Defra, 2019 |                                         |
| Wastewater              | 0.708           | kg/m³              | Defra, 2019 |                                         |
| Paper, fresh fibre      | 0.953           | kg/kg              | Defra, 2019 | Paper and board                         |
| Wood waste              | 0.021           | kg/kg              | Defra, 2019 |                                         |
| Paper waste             | 0.021           | kg/kg              | Defra, 2019 |                                         |
| Plastic waste           | 0.021           | kg/kg              | Defra, 2019 |                                         |
| Residual waste          | 0.021           | kg/kg              | Defra, 2019 |                                         |
| Organic waste           | 0.021           | kg/kg              | Defra, 2019 |                                         |
| Building rubble         | 0.021           | kg/kg              | Defra, 2019 |                                         |
| Industrial waste        | 0.021           | kg/kg              | Defra, 2019 |                                         |
| Fuel oil TL             | 0.528           | kg/l               | Defra, 2019 | Burning oil                             |
| Natural gas TL          | 0.263           | kg/m³              | Defra, 2019 | 100% mineral blended,<br>natural gas    |
| Diesel TL               | 0.626           | kg/l               | Defra, 2019 |                                         |
| Electricity DE-TL       | 0.070           | kg/kWh             | Defra, 2019 | WTT electricity Germany                 |
| Service trips, van      | 0.252           | kg/km              | Defra, 2019 | Vans, average, diesel                   |
| Truck – journeys        | 1.661           | kg/km              | Defra, 2019 | all HGVs, refrigerated,<br>average load |

\* arithmetic mean of the emission factors for coach travel (0.105 kg  $CO_2$  equivalents per kilometre) and train travel (0.041 kg  $CO_2$  equivalents per kilometre), (Defra, 2019).

For natural gas, the emission factor of "natural gas" was assumed to be 2.037 kg CO<sub>2</sub> equivalents per Nm<sup>3</sup>, for fuel oil the emission factor of 2.540 CO<sub>2</sub> equivalents per litre and for diesel the emission factor of "diesel 100% mineral" of 2.687 CO<sub>2</sub> equivalents per litre. The emission factor for public transport is made up of the arithmetic mean of bus and train journeys. For the journeys of tradesmen for maintenance and repair, the emission factor of "vans, average diesel" was assumed at the level of 0.252 kg CO<sub>2</sub> equivalents per km and for the delivery of material by lorries, the value of "all HGVs, average laden refrigerated" was assumed at the level of 1.661 kg CO<sub>2</sub> equivalents per km. For the different types of waste (wood, paper, plastic, residual waste, organic waste, construction waste and industrial waste), the emission factor was chosen under the category "Combustion", depending on the type of waste, since the largest share of the waste quantities is sent for thermal recycling.

| Term                    | Emission factor | Unit  | Source      |
|-------------------------|-----------------|-------|-------------|
| Raw milk                | 1.000           | kg/kg | Own data    |
| Skimmed milk/buttermilk | 14.700          | kg/kg | WWF, 2012   |
| Concentrate             | 14.700          | kg/kg | WWF, 2012   |
| Cream                   | 3.280           | kg/kg | WWF, 2012   |
| Aluminium *             | 12.871          | kg/kg | Defra, 2019 |
| Wood                    | 0.414           | kg/kg | Defra, 2019 |
| Cardboard boxes         | 0.843           | kg/kg | Defra, 2019 |
| Plastics**              | 3.116           | kg/kg | Defra, 2019 |
| Paper                   | 0.953           | kg/kg | Defra, 2019 |
| Composite packaging     | 1.999           | kg/kg | Defra, 2019 |
| Ingredients             | 2.800           | kg/kg | WWF, 2012   |

\*This is primary material

\*\*This is an average value for various plastics

Through the AgriClimateChange programme, which we ran together with our farmers, the GHG emissions per kg of milk were calculated and evaluated in practice. The starting point is 1,000 kg CO<sub>2</sub> equivalents per kilogram of milk. For skimmed milk/buttermilk, the figure of 14,700 kg CO<sub>2</sub> equivalents per kilogram of skimmed milk powder/buttermilk was assumed. The same value was used for the concentrate. For cream, the published value for cream products (WWF, 2012) was used. The main ingredients are sugar, jam, pudding powder and cocoa. The value of sugar and cocoa (WWF, 2012) has been used for this purpose. For composite packaging, a self-calculated emission factor was defined, as none was found in the literature. Composite packaging consists of approx. 75% cardboard, 12.5% aluminium and 12.5% plastic. With an emission factor for cardboard packaging of 0.843 kg/kg, for aluminium of 12.871 kg/kg and for plastics of 3.116 kg/kg, an estimated emission factor for composite packaging of 1.999 kg/kg results in connection with the composition of composite packaging.